Creep and Stress Rupture Properties

Creep plots show strain on the y-axis vs time on the x-axis. There are three phases on the curve: the initial stage (with a decreasing slope), the second stage (where the slope is constant), and the third stage (where the slope begins increasing). After the third stage, the object will rupture.Creep Properties

Creep is a time-dependent deformation of a material while under an applied load that is below its yield strength. It is most often occurs at elevated temperature, but some materials creep at room temperature. Creep terminates in rupture if steps are not taken to bring to a halt.

Creep data for general design use are usually obtained under conditions of constant uniaxial loading and constant temperature. Results of tests are usually plotted as strain versus time up to rupture. As indicated in the image, creep often takes place in three stages.  In the initial stage, strain occurs at a relatively rapid rate but the rate gradually decreases until it becomes approximately constant during the second stage. This constant creep rate is called the minimum creep rate or steady-state creep rate since it is the slowest creep rate during the test. In the third stage, the strain rate increases until failure occurs. 

Creep in service is usually affected by changing conditions of loading and temperature and the number of possible stress-temperature-time combinations is infinite.  While most materials are subject to creep, the creep mechanisms is often different between metals, plastics, rubber, concrete.

Stress Rupture Properties

Stress rupture testing is similar to creep testing except that the stresses are higher than those used in a creep testing.  Stress rupture tests are used to determine the time necessary to produce failure so stress rupture testing is always done until failure.  Data is plotted log-log as in the chart above.  A straight line or best fit curve is usually obtained at each temperature of interest.  This information can then be used to extrapolate time to failure for longer times. A typical set of stress rupture curves is shown below.  

The temperature will effect the creep rate for a given material.