Radiograph Interpretation - Castings

The major objective of radiographic testing of castings is the disclosure of defects that adversely affect the strength of the product. Castings are a product form that often receive radiographic inspection since many of the defects produced by the casting process are volumetric in nature, and are thus relatively easy to detect with this method. These discontinuities of course, are related to casting process deficiencies, which, if properly understood, can lead to accurate accept-reject decisions as well as to suitable corrective measures. Since different types and sizes of defects have different effects of the performance of the casting, it is important that the radiographer is able to identify the type and size of the defects. ASTM E155, Standard for Radiographs of castings has been produced to help the radiographer make a better assessment of the defects found in components. The castings used to produce the standard radiographs have been destructively analyzed to confirm the size and type of discontinuities present. The following is a brief description of the most common discontinuity types included in existing reference radiograph documents (in graded types or as single illustrations).

Radiographic Indications for Castings

Radiograph of Gas porosity or blow holes.Gas porosity or blow holes are caused by accumulated gas or air which is trapped by the metal. These discontinuities are usually smooth-walled rounded cavities of a spherical, elongated or flattened shape. If the sprue is not high enough to provide the necessary heat transfer needed to force the gas or air out of the mold, the gas or air will be trapped as the molten metal begins to solidify. Blows can also be caused by sand that is too fine, too wet, or by sand that has a low permeability so that gas cannot escape. Too high a moisture content in the sand makes it difficult to carry the excessive volumes of water vapor away from the casting. Another cause of blows can be attributed to using green ladles, rusty or damp chills and chaplets.

Radiograph of Sand inclusions and dross.Sand inclusions and dross are nonmetallic oxides, which appear on the radiograph as irregular, dark blotches. These come from disintegrated portions of mold or core walls and/or from oxides (formed in the melt) which have not been skimmed off prior to the introduction of the metal into the mold gates. Careful control of the melt, proper holding time in the ladle and skimming of the melt during pouring will minimize or obviate this source of trouble.

Shrinkage is a form of discontinuity that appears as dark spots on the radiograph. Shrinkage assumes various forms, but in all cases it occurs because molten metal shrinks as it solidifies, in all portions of the final casting. Shrinkage is avoided by making sure that the volume of the casting is adequately fed by risers which sacrificially retain the shrinkage. Shrinkage in its various forms can be recognized by a number of characteristics on radiographs. There are at least four types of shrinkage: (1) cavity; (2) dendritic; (3) filamentary; and (4) sponge types. Some documents designate these types by numbers, without actual names, to avoid possible misunderstanding.

Radiograph of Cavity shrinkage.Cavity shrinkage appears as areas with distinct jagged boundaries. It may be produced when metal solidifies between two original streams of melt coming from opposite directions to join a common front. Cavity shrinkage usually occurs at a time when the melt has almost reached solidification temperature and there is no source of supplementary liquid to feed possible cavities.

Radiograph of Dendritic shrinkage.Dendritic shrinkage is a distribution of very fine lines or small elongated cavities that may vary in density and are usually unconnected.

Filamentary shrinkage usually occurs as a continuous structure of connected lines or branches of variable length, width and density, or occasionally as a network.

Radiograph of Sponge shrinkage.Sponge shrinkage shows itself as areas of lacy texture with diffuse outlines, generally toward the mid-thickness of heavier casting sections. Sponge shrinkage may be dendritic or filamentary shrinkage. Filamentary sponge shrinkage appears more blurred because it is projected through the relatively thick coating between the discontinuities and the film surface.

Radiograph of Cracks.Cracks are thin (straight or jagged) linearly disposed discontinuities that occur after the melt has solidified. They generally appear singly and originate at casting surfaces.

Cold shuts generally appear on or near a surface of cast metal as a result of two streams of liquid meeting and failing to unite. They may appear on a radiograph as cracks or seams with smooth or rounded edges.

Radiograph of Inclusions.Inclusions are nonmetallic materials in an otherwise solid metallic matrix. They may be less or more dense than the matrix alloy and will appear on the radiograph, respectively, as darker or lighter indications. The latter type is more common in light metal castings.

Radiograph of Core shift.Core shift shows itself as a variation in section thickness, usually on radiographic views representing diametrically opposite portions of cylindrical casting portions.

Hot tears are linearly disposed indications that represent fractures formed in a metal during solidification because of hindered contraction. The latter may occur due to overly hard (completely unyielding) mold or core walls. The effect of hot tears as a stress concentration is similar to that of an ordinary crack, and hot tears are usually systematic flaws. If flaws are identified as hot tears in larger runs of a casting type, explicit improvements in the casting technique will be required.

Misruns appear on the radiograph as prominent dense areas of variable dimensions with a definite smooth outline. They are mostly random in occurrence and not readily eliminated by specific remedial actions in the process.

Mottling is a radiographic indication that appears as an indistinct area of more or less dense images. The condition is a diffraction effect that occurs on relatively vague, thin-section radiographs, most often with austenitic stainless steel. Mottling is caused by interaction of the object's grain boundary material with low-energy X-rays (300 kV or lower). Inexperienced interpreters may incorrectly consider mottling as indications of unacceptable casting flaws. Even experienced interpreters often have to check the condition by re-radiography from slightly different source-film angles. Shifts in mottling are then very pronounced, while true casting discontinuities change only slightly in appearance.

Radiographic Indications for Casting Repair Welds

Most common alloy castings require welding either in upgrading from defective conditions or in joining to other system parts. It is mainly for reasons of casting repair that these descriptions of the more common weld defects are provided here. The terms appear as indication types in ASTM E390. For additional information, see the Nondestructive Testing Handbook, Volume 3, Section 9 on the "Radiographic Control of Welds."

Slag is nonmetallic solid material entrapped in weld metal or between weld material and base metal. Radiographically, slag may appear in various shapes, from long narrow indications to short wide indications, and in various densities, from gray to very dark.

Porosity is a series of rounded gas pockets or voids in the weld metal, and is generally cylindrical or elliptical in shape.

Undercut is a groove melted in the base metal at the edge of a weld and left unfilled by weld metal. It represents a stress concentration that often must be corrected, and appears as a dark indication at the toe of a weld.

Incomplete penetration, as the name implies, is a lack of weld penetration through the thickness of the joint (or penetration which is less than specified). It is located at the center of a weld and is a wide, linear indication.

Incomplete fusion is lack of complete fusion of some portions of the metal in a weld joint with adjacent metal (either base or previously deposited weld metal). On a radiograph, this appears as a long, sharp linear indication, occurring at the centerline of the weld joint or at the fusion line.

Melt-through is a convex or concave irregularity (on the surface of backing ring, strip, fused root or adjacent base metal) resulting from the complete melting of a localized region but without the development of a void or open hole. On a radiograph, melt-through generally appears as a round or elliptical indication.

Burn-through is a void or open hole in a backing ring, strip, fused root or adjacent base metal.

Arc strike is an indication from a localized heat-affected zone or a change in surface contour of a finished weld or adjacent base metal. Arc strikes are caused by the heat generated when electrical energy passes between the surfaces of the finished weld or base metal and the current source.

Weld spatter occurs in arc or gas welding as metal particles which are expelled during welding. These particles do not form part of the actual weld. Weld spatter appears as many small, light cylindrical indications on a radiograph.

Tungsten inclusion is usually more dense than base-metal particles. Tungsten inclusions appear very light radiographic images.  Accept/reject decisions for this defect are generally based on the slag criteria.

Oxidation is the condition of a surface which is heated during welding, resulting in oxide formation on the surface, due to partial or complete lack of purge of the weld atmosphere. The condition is also called sugaring.

Root edge condition shows the penetration of weld metal into the backing ring or into the clearance between the backing ring or strip and the base metal. It appears in radiographs as a sharply defined film density transition.

Root undercut appears as an intermittent or continuous groove in the internal surface of the base metal, backing ring or strip along the edge of the weld root.