Home - Education Resources - NDT Course Material - Ultrasound

Introduction to Ultrasonic Testing

Basic Principles
Present State
Future Direction

Physics of Ultrasound
Wave Propagation
Modes of Sound Waves
Properties of Plane Waves
Wavelength/Flaw Detection
Elastic Properties of Solids

Acoustic Impedance
Refraction & Snell's Law
Mode Conversion
Signal-to-noise Ratio
Wave Interference

Equipment & Transducers
Piezoelectric Transducers
Characteristics of PT
Radiated Fields
Transducer Beam Spread
Transducer Types
Transducer Testing I
Transducer Testing II
Transducer Modeling
Tone Burst Generators
Function Generators
Impedance Matching
Data Presentation
Error Analysis

Measurement Techniques
Normal Beam Inspection
Angle Beams I
Angle Beams II
Crack Tip Diffraction
Automated Scanning
Velocity Measurements
Measuring Attenuation
Spread Spectrum
Signal Processing
Flaw Reconstruction

Calibration Methods
Calibration Methods
DAC Curves
Curvature Correction
Thompson-Gray Model
Grain Noise Modeling

Selected Applications
Rail Inspection

Reference Material
UT Material Properties


Rail Inspection

One of the major problems that railroads have faced since the earliest days is the prevention of service failures in track. As is the case with all modes of high-speed travel, failures of an essential component can have serious consequences. The North American railroads have been inspecting their most costly infrastructure asset, the rail, since the late 1920's. With increased traffic at higher speed, and with heavier axle loads in the 1990's, rail inspection is more important today than it has ever been. Although the focus of the inspection seems like a fairly well-defined piece of steel, the testing variables present are significant and make the inspection process challenging.

Rail inspections were initially performed solely by visual means. Of course, visual inspections will only detect external defects and sometimes the subtle signs of large internal problems. The need for a better inspection method became a high priority because of a derailment at Manchester, NY in 1911, in which 29 people were killed and 60 were seriously injured. In the U.S. Bureau of Safety's (now the National Transportation Safety Board) investigation of the accident, a broken rail was determined to be the cause of the derailment. The bureau established that the rail failure was caused by a defect that was entirely internal and probably could not have been detected by visual means. The defect was called a transverse fissure (example shown on the left). The railroads began investigating the prevalence of this defect and found transverse fissures were widespread.

One of the methods used to inspect rail is ultrasonic inspection. Both normal- and angle-beam techniques are used, as are both pulse-echo and pitch-catch techniques. The different transducer arrangements offer different inspection capabilities. Manual contact testing is done to evaluate small sections of rail but the ultrasonic inspection has been automated to allow inspection of large amounts of rail.

Fluid filled wheels or sleds are often used to couple the transducers to the rail. Sperry Rail Services, which is one of the companies that perform rail inspection, uses Roller Search Units (RSU's) comprising a combination of different transducer angles to achieve the best inspection possible. A schematic of an RSU is shown below.