Home - Education Resources - NDT Course Material - Ultrasound
 - Introduction to Ultrasonic Testing Introduction Basic Principles History Present State Future Direction Physics of Ultrasound Wave Propagation Modes of Sound Waves Properties of Plane Waves Wavelength/Flaw Detection Elastic Properties of Solids Attenuation Acoustic Impedance Reflection/Transmission Refraction & Snell's Law Mode Conversion Signal-to-noise Ratio Wave Interference Measurement Techniques Normal Beam Inspection Angle Beams I Angle Beams II Crack Tip Diffraction Automated Scanning Velocity Measurements Measuring Attenuation Spread Spectrum Signal Processing Flaw Reconstruction Selected Applications Rail Inspection Weldments Reference Material UT Material Properties References Quizzes

Ultrasonic Measurement of Stress

For sheet and plate specimens experiencing applied or residual stress, the principal stresses sa and sb may be inferred from orthogonal velocity measurements. The following equation relates ultrasonic velocities to the principal stresses experienced in sheets or plates.

2 p*Vavg*[V(ø°) - V(ø° + 90°)] = sa - sb

Vavg is the average shear velocity. It is understood that velocity difference [ V(ø°) - V(ø° + 90°)] will be maximized when the ultrasonic propagation directions are aligned with principal stress axes. The magnitude of this difference, along with the density and mean velocity can be used to predict the principal stress difference.

It is particularly noteworthy that no acoustoelastic constants or other nonlinear properties of the material are needed for a stress prediction, which distinguishes this approach from other ultrasonic stress measurement techniques. The nonlinear material characteristics have been suppressed by the process of taking the velocity difference.

Measurement Technique

Differential velocity is measured using a T1-T2---R fixed array of EMAT transducers at 0° and 90° relative rotational directions depending on device configuration.

EMAT Driver Frequency: 450-600 kHz (nomioverview_stress.gifnal)
Sampling Period: 100 ns
Time Measurement Accuracy:

-------Resolution 0.05 Ns
-------Accuracy required for less than 2 KSI Stress Measurements: Variance 2.47 Ns