Home - Education Resources - NDT Course Material - Materials and Processes


Selection of Materials
Specific Metals
  Metal Ores
  Iron and Steel
  Aluminum/Aluminum Alloys
  Nickel and Nickel Alloys
  Titanium and Titanium Alloys

General Manufacturing Processes

Metallic Components
Ceramic and Glass Components
Polymers/Plastic Components

Manufacturing Defects

Service Induced Damage
Material Specifications

Component Design, Performance and NDE
Fracture Mechanics
Nondestructive Evaluation


The application of a force to an object is known as loading. Materials can be subjected to many different loading scenarios and a material’s performance is dependant on the loading conditions. There are five fundamental loading conditions; tension, compression, bending, shear, and torsion. Tension is the type of loading in which the two sections of material on either side of a plane tend to be pulled apart or elongated. Compression is the reverse of tensile loading and involves pressing the material together.  Loading by bending involves applying a load in a manner that causes a material to curve and results in compressing the material on one side and stretching it on the other.  Shear involves applying a load parallel to a plane which caused the material on one side of the plane to want to slide across the material on the other side of the plane. Torsion is the application of a force that causes twisting in a material.

If a material is subjected to a constant force, it is called static loading. If the loading of the material is not constant but instead fluctuates, it is called dynamic or cyclic loading. The way a material is loaded greatly affects its mechanical properties and largely determines how, or if, a component will fail; and whether it will show warning signs before failure actually occurs.